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Introduction

® Single stocks in the Equity Market generally are not stationary.
® But, their yields, in many cases are.

® From the econometrical point of view, they are generally told to be
Integrated of order 1.

® Cointegration is a mathematical theory that helps to handle the problem
generated by non-stationary data.

® With the help of this theory, we propose to build linear combinations of
these single stocks that are stationary.

® Such combinations can be traded and are called synthetic assets.

® Eventually, these stationary assets have the mean reversion property and
we will use this property in order to set up arbitrage strategies.
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Part I: Mathematical Framework

dDescription of the
framework of our strategy

IStatistical Analysis of
models that are Integrated of

order 1 (ie I(1))
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Description of the framework of our strategy (1)

1 Reminder about Vector AutoRegressive models (VAR)

In what follows, we consider a VAR process Xt (px1), which can be
written:

k
X, =) ILX, +®D, +¢

i=1

with 1<¢<T
D, =(1,t,t%)
X 1apse-s X, known
¢, 1.1.d with law N _(0,€Q)

Remark: here, we suppose that the errors are i.i.d with a gaussian law, but
it can easily be generalised with errors i.i.d with finite moments of order 2.
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‘ Description of the framework of our strategy (2) |

Definition: Let’s introduce the characteristic polynomial: ‘ A( Z)‘ with

k
A(z)=1- ZziHi
i=1

Inversibility THEOREM for a VAR process

The VAR process X, can be written as a function of its initial values and of the errors :

k t—1
X, = ZI: C_(TLX,+.+I1.X )+ Z(; C.(¢_,+®D,))
s= Jj=

kan A
with C, =1 et Vn21: C, =) C,_II,. LetC(z)=) z"C,.
j=1

n>0

Then, 36 > 0/ : this serie converges and inside the disc of radius ¢ :
C(2)A(z)=1 ie C(z) = A(z)"
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Description of the framework of our strategy (3)

Remark: the solution given by this theorem is valid whatever the
parameters are. On the contrary, it is reminded in what follows that the
parameters have to be constrained in order to define a stationary VAR
process.

Definition: a process X . Is told strongly stationary iif

Yh>1: LaW(th,...,Xtm):LaW(Xt1+ha--°9Xtm+h)

It is told weakly stationary of order 2 iif

EX, = constant et VarX, = constant

Remark: in part I, strong stationarity is used since the errors are gaussian.
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Description of the framework of our strategy (4)

FUNDAMENTAL HYPOTHESIS:
‘A(Z)‘=03‘2‘>1 or z=1

Remark: this fundamental hypothesis excludes explosive roots with |z|<1
as well as seasonal roots (|z|=1 and z different from 1). If z=1 is a root, then the
process is told to have a unit root.
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Description of the framework of our strategy (5)

THEOREM defining the necessary and sufficient condition for the
stationarity of a VAR process

Under the fundamental hypothesis, a necessary and sufficient condition
for X, —EX, to bestationary is |A(1)| # 0.In such a case,

the MA representation of the VAR process is obtained :

X, => (Ce_,+®D,_,) where 356 >0/: C(z)=) z"'C, = A(z)”

n=>0 n>0

1s convergent for |z| <l+o6

Remark: (i) when ®© =0, one recognizes the WOLD theorem.

(ii) it is checked that with gaussian errors, the strong stationarity is
recovered, whereas in the general case, the weak stationarity is obtained.
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Description of the framework of our strategy (6)

L Basic definitions for cointegration

Preliminary remark:

Many economic variables are non stationary and the kind of non-
stationarity that is considered here can be removed by one or several
differentiations. In what follows, we will suppose that:

g is i.id withlaw N_(0,Q)

Definition:

a process Y,/: Y, —EY = ZCl.gt_i 1s integrated

i>0

A
of order 0 @C:ZCZ. # 0

i>0
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Description of the framework of our strategy (7)

Remarks: (1) C may be singular and in fact thisis a pathway

to cointegration.

(11) The process defined in the stationarity theorem

is 1(0) and in fact C(1)=A(1)" is regular.

(i11) In dimension 1, stationarity and I(0) processes define
the same concepts.

Definition:

a process X, 1s told "integrated of order d"

A
(and noted down I(d), d >1) < A'(X, —EX,) is 1(0)
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Description of the framework of our strategy (8)

Remark: the property of being integrated is connected with the stochastic
part of the process since the mean is substracted from the process in the
definition. The concept of I(0) process is defined without considering
deterministic terms such as the mean or the trend.

Définition:

Let X, : I(1). X, is told cointegrated with the cointegration

vector [ # O<i> B X, isstationary.

The cointegration rank 1s the number of cointegration relations

that are linearily independant.

Last, the vectorial space that is generated by cointegration relations

is the cointegration space.
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Description of the framework of our strategy (9)

d The Vector Error Correction Model (VECM) representation

We write the already used VAR model in a new way that is the VECM,
because this is the model that is used in the cointegration theory.

k-1
Every VAR(K) can be written : AX, =T1X,, + > [AX,  +®D, +¢,
i=l

k k
with IT=> I, -1 and Vi>1: T, == ) TII,
i J=i+l
A k—1
The following quantity is alsoused : I'=17— Z I

i=1

k-1
The characteristic polynomial of X, can be written : A(z) =(1-z)[-zI1- Z (1-z)ZT,

i=l

Let's note that : A(1) =-II and A(l) = diA(z)
Z

z=1

k-1
=-I-7+) I,=-I1-T
i=1
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Description of the framework of our strategy (10)

GRANGER Representation THEOREM (1)

If ‘A(z)‘:O:‘z‘>l or z=1 and 1f rank(Il)=r<p

then Ja, B (pxr) withrank r sothat: I1=af
A necessary and sufficient condition for AX, — EAX, and

- a(')rtho A(l)ﬁ ortho

In this case, X, can be written with the MA representation :

=30

aortho rﬁ ortho

B X, —EB X, tobe stationary is that

t
X, =CY (&+®D,)+C,(L)(&,+®D,)+A
i=1

where A depends on the initial values andissothat: B A =0

, P
C = ﬂ ortho (aorthorﬁ ortho aortho
X, 1sclearly an I(1) process that is cointegrated with the r column vectors of [
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Description of the framework of our strategy (11)

GRANGER Representation THEOREM (2)

1
-z
and with 1+ asconvergence radius (0 > 0)

Last, the serie C,(z) issothat: A'(z)=C +C,(2), with z=1

Remark: clearly, from the MA writing, IB X t EIBX ¢ 1s stationary
since 3C=0 et A =0.Besides, 5C (L)(& +®DD,) is a representation of the
distance of S X,-ES X, from the balance position. The relation g X, = ES X,
defines underlying economic relations and supposes that all agents react to the
distance from the balance position through the adjustment coefficient o and
make the variables satisfy the economic relations again.
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Description of the framework of our strategy (12)

Remark (end): it has to be noted that the
relations SBX =ESFX  are not asymptotic
balance relations with t—>+o or else relations
between the levels of variables in balance. It
should be told instead that these relations are
relations between the portfolio variables that are
described by the statistical model and that
translate the adjustment behaviour of the agents.
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Statistical Analysis of I(1) models - (1)

The existence of the cointegration vectors, which is also
known as the Reduced Rank hypothesis, is expressed in
a parametric form, so that the Likelihood method can
be applied.

dTherefore, estimators and statistical tests related to a
fixed number of cointegration vectors can be written
with closed formula.
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Statistical Analysis of I(1) models - (2)

U Let’s consider the following general VECM model:

k
AX, =aff' X, + Z FAX _ +®D +¢
=1

with 1 < ¢ < T ,
1.1.d with law N _(0,Q)

and (a, p,1,,....1,,0,Q) asfree parameters

&
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Statistical Analysis of I(1) models - (3)

U As already told, an analysis of the likelihood function is done with the following
notation:

Z,=aof'Z +¥VYZ, +¢
with Z,, = AX

{

th — Xt—l
Z, = (AX,_,.,AX . ,D)
Y = (I,..I 6 o)
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Statistical Analysis of I(1) models - (4)

Let’s introduce: 1 T
M, =0>2,7,
=1
with 0 < 4,7 < 2
Remark: _ !
M,=M,

With a constant, the log-likelihood can be written:

InL(¥Y,a, 5,Q)= —gln‘Q‘

1 T ' . '
—EZ(ZOt —-af th _\PZZt) @’ 1(ZOt —off th _\PZZf)
t=1
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Statistical Analysis of I(1) models - (5)

Q First order conditions give for W/

T A
Z(ZOt —05,8 th _LPZ%)Zzt =0

t=1
- 1 ' 1
Y(a,p)=M,M,, —af M,,M,,
1 The residuals ROI and th are defined by:
. -1
ROt — ZOt o Monzz Z2t
. -1
th — th _M12M2222t
(these residuals would be obtained while regressing respectively AX, and X,
on
AX,,...,AX

)
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Statistical Analysis of I(1) models - (6)

Therefore the log-likelihood can be written:

T
In L(CZ, ,B,Q) = —gln‘g‘ _%Z(Ro;: — aﬂ'th)'Q_l (ROt o aﬁ'th)
t=1

Let: 1 < . _
S, = > RR,=M,-M, MM,
t=1

t4V it
with 0 < 7,7 < 1

For ﬂ fixed, it is easy to infer (¢ and () while regressing R, on IB'RU
So:

a(B)=S,B(BS,B)"
Q(B) = Sy = S BBS B B'S,y = Soo —a( BYB'S, B) a( B)

DMRG-Paris - 17/06/05 CCF <X



Statistical Analysis of I(1) models - (7)

Therefore:

Sl
BS.A

and the FUNDAMENTAL THEOREM of the STATISTICAL ANALYSIS of
I(1) models can be deduced:

Under hypothesis: H(r):I1 = a8 , the MLE of fis given

LI (B)=

é (,B)| — ‘,B'(Su _SloSo_olsm),B‘

while solving the following equation : |4S,, = 8,55 S| = 0

with the eigenvalues: 1> 4 >...> 4 > 0and the

AN

eigenvectors: V =(v,...,v ) normalizedby V S, V=1
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Statistical Analysis of I(1) models - (8)

AN

Cointegration relations are infered by : S =(v,,...,v.)

and the maximized likelihood function can be written :

2

LT (H(r)) = ‘SOO ‘H (1-A4,). The estimators of
i=1
the other parameters are obtained while inserting

,%in the equations above, ie with f = ,% in the OLS.
The likelihood test : H(r) : rank(/) =1 against

p A
rank( /) > r has for statistic: -T Z In(1-4.)

1=r+1
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Statistical Analysis of I(1) models - (9)

Remarks:

(i) The r biggest eigenvalues are useful for getting

the cointegration relations, while the p - r smallest

are used in the JOHANSEN statistical test.

(ia=Sy, p
ﬁortho — Sll(vr+1’ p)

N\ N\

. 1
ortho SOO SOI (Vr+1 5° p )
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Statistical Analysis of I(1) models - (10)

(J Models with constrained determinist terms

Up to now, the coefficients of @ were totally free.

From now, we shall also consider the case when the dominant coefficient is
constrained. Therefore, we get two other models:

with constrained constant:

AX =a(f X, 1+p)+ZrAX +E

with constrained linear trend:

k
AX,=a(BX,_ +p)+> TAX, +u+e
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Statistical Analysis of I(1) models - (11)

The same likelihood method can be used with the two new models. Only the
notation differ.

With a constrained constant: ZOt becomes Zzt = AX

t
%k ' '
Z, becomesZ, =(X,_,,l)
%k ' ! '
Z, becomesZ, =(AX,_,....,AX, ;)
With a constrained linear trend:

Z, becomes Z, = AX

t

Z, becomesZ, =(X,_,,t)
Z, becomes Z, =(AX,_,..,AX 1)

t
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Statistical Analysis of I(1) models - (12)

Conclusion: the matrix reduction problem has pi=Pp +1 for
dimension with 7 — ()
P1

] Limit laws

=>» Generally, the limit law of the JOHANSEN statistical test depends on the
determinist terms, constrained or not.

=>» For big samples (about 400), the asymptotic distribution of the statistic is well
known since the middle of the 90s and was tabulated by simulation. These
standard critical values are available in statistical tables.

=> For small samples, JOHANSEN proposed in 2002, a Bartlett correction which
consists in estimating the VECM and in calculating a correction coefficient
which is multiplied to the standard critical value.
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Part I1: Description of the proposed strategy and first results

dDescription of an arbitrage
strategy

JFirst results
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Description of an arbitrage strategy (1)

O LAG choice

The first problem to solve in order to work with the considered VECM is to
determine the LAG of the model: k. In an article from 1999, Liitkepohl and
Saikkonen suggest to use the AIC (Akaike Information Criteria). After having
collected a few pieces of information, it appeared that Hurvich and Tsai had
proposed in 1991 a corrected version of the AIC because it overestimates the
real LAG.

With a constant, this AIC_ is an estimator of the expectancy of Kullback-
Leibler, that is the distance between the sample and the considered VECM
model.

The selection of k is to be done while minimizing the AI(; for different
values ke {0;...; Pua }.
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Description of an arbitrage strategy (2)

For univariate time series, we have chosen p_.. the same way as Fumio
Hayashi does in his book « Econometrics » (2000), ie:

1

T 4
T) =12 —
D max (T) (1ooj

For multivariate time series, we have decided to take: P, =6

The implementation of the AIC, with the sample (X,,...,X;) has to be
done while doing the following regression:
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‘ Description of an arbitrage strategy (3) |

Y = ZCO@f +& with Y = (Xpmax(T)+2 r--aXT)' )

X pm e AX pm e AX pm (T)+1-k D,
Z= : : : :
XT—I AX;’—I XT—I—k DT
I,
Coef =| : |, & withlawN (0,Z) and X, =..=X_,,, =0
Hk

The OLS estimators give: Coef =(ZZ)'ZY and

5 = %(Y—ZCOAef)'(Y—ZCerf)
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Description of an arbitrage strategy (4)

In this framework: A
AIC. =Tn|g|+ LUP*+Up+d)p)
I'—kp—d—-p-1

where d is the number of determinist terms.

U Estimation of the cointegration vectors: it has to be implemented exactly the
same way as it was described in Part I.

U Sample size choice: different backtestings showed that the concepts of
stationarity and moreover of arbitrage are very furtive. So we decided to work
on small samples, typically with a size of 50.
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Description of an arbitrage strategy (5)

U] Stationarity test
In an article from March 2004 entitled « Recent Advances in Cointegration
Analysis » , Helmut Liitkepohl advises to use the ADF (Augmented Dickey
Fuller) test.
Incase y, isan AR(k), the ADF test uses the regression of Ay, on (y_,AY, (s AV, 1.1, D,)

and is based on the t-statistic 7 of the coefficient Il of the associated ECM model. Indeed :
k-1
A =Ty + Z alAy,_ +®D,+¢& ie Y =ZCoef +& with Y =(Ay,,,»....Av;) ,
i=1
Yk Ay, - Ay, Dl‘c+1 .
Z=| : : : |, ¢ withlaw N(0,6%) , Coef =(ZZ2)"'ZY
Yra AYr o A¥rag D'T
N 2
E HY —Z Coef
and o =

where d =dim(D,)

(T-k)-(k+d)
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Description of an arbitrage strategy (6)

H.: TI=0 1e non stationa
The test is: | ° Y v

H : II<0 1ey, stationary

AN

A I Coef;
and 7 = =

2

\/ 5 (22); \/ c (Z2),!

The limit law of this statistic is non standard and depends on the

determinist terms of the model. The major drawback of this test is its lack of
power for small samples (this is precisely the interesting case for us). So we
decided to consider instead the ADF-GLS test, which is described in the book

of Davidson&MacKinnon « Econometric Theory and Methods ».
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Description of an arbitrage strategy (7)

This ADF-GLS was proposed by Elliott, Rothenberg and Stock in an article
from 1996 entitled: « Efficient Tests for an Autoregressive Unit Root ».

While writing: Ay, =yD, + By, + Zp: S Ay +& o the idea is to infer y (ie

j=1

the determinist coefficients) before infering p, because it appears on classical
ADF tests, that the more determinist terms we have, the weaker the power of
the test is.

So, we consider the following regression:

— — — C
Y= P Y :(Dt_th-1)7/O TV, WhGI’C,O:l-I-ﬁ

E=-7whenDt = (1)

with |-
c=-13.5when D, =(1,t)
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Description of an arbitrage strategy (8)

Remark: o0 — 1

T—+c0

A A

Let 7/0 be the estimator of 7/0 and let y't =y, — D, 7/0

p
The regression: Ay't = ,B | y't_1 + Z o) j Ay't_ j + &, helps us to calculate the
t-statistic for IB -0 . j=1
If D, =(l) then the asymptotic distribution of this statisticis 7,
If D, = (1,t) then the asymptotic distribution was tabulated by Elliott,
Rothenberg and Stock, and is close to 7
d JOHANSEN ’s Rank Test

The implementation of this test comes from an article of JOHANSEN
(2002) published in Econometrica and entitled: « A small sample correction for
the test of cointegration rank in the vector autoregressive model »
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Description of an arbitrage strategy (9)

U Description of the chosen strategy

e The chosen strategy is simple.

e From a portfolio of p basic assets (p=10), all the sub-portfolios of size 2,3
or 4 are extracted (meaning all pairs, triplets and quadruplets).

e For each sub-portfolio, we infer at instant t the vector [ corresponding
to the biggest eigenvalue of the associated VECM., in order to build a linear
combination of the basic assets. This combination is called a synthetic
asset.

e The stationarity at level 99% of the synthetic asset is checked in order to
build an asset without trend, which is a modelling of the stochastic part of
the synthetic asset.

e Therefore, this asset without trend is stationary around zero.

e Consequently, a good measure of the market risk of the synthetic asset is
the standard deviation of the asset without trend.
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Description of an arbitrage strategy (10)

eThis measure will determine the quantity of synthetic asset to trade, as well as
the conditions of opening and closing an arbitrage.

eEventually, several backtestings have shown the need to use additional rules,
called consistency rules, in order to get a good ratio of positive operations.

eThe first rule is that for every proposed arbitrage, we decided to check the
following condition: for every moving sub-sample of a certain size (typically 20)
of the asset without trend, one should have 45% of the values above zero and
45% under zero. This condition is a translation of the fact that an asset that is
stationary around zero is supposed to swing around zero.

el.ast, when there are several arbitrage operations left, we decided to choose the
best one in a certain sense. Our purpose is to calculate the mean for every
moving subsample of a certain size (typically 20) and then to calculate the
maximum of the absolute values of these means. The best arbitrage operation is
the one with the lowest maximum.
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Description of an arbitrage strategy (11)

Remarks:

=> This last condition was decided in order to avoid clusters of
bad operations and to mutualize market risk over time.
Moreover, this condition is synonymous with the fact that a
process that is stationary around zero is supposed to have a
mean close from zero.

=> The spirit of the strategy is to be strict on the opening
conditions of an operation because once this operation is
released, whatever happens, the trader is charged for it.

At instant t+1, a buying (resp. a selling) operation is released when the value
of the asset without trend is in the bracket [-2.506;-6] (resp. [6;2.506]).

The quantity of synthetic asset to be traded is defined as a percentage of the
value of the portfolio normalized by o.
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Description of an arbitrage strategy (12)

*Conversely, once an operation is launched, it is closed only when one of the
three following conditions is satisfied:

> the target is completed, ie the asset without trend is positive (resp.
negative) for a buying (resp. a selling) operation.

> the operation lasts more than 100 opened days (# S months).
> the operation generates losses bigger than 10c per share of synthetic asset.
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First results (1)

[ The results we present are in no case definitive. They should be taken as an
introduction to future developments.

[ The following backtesting was made on the european market.

[ Choice of the data:

The single stocks used for this backtesting were these of 15 of the biggest
capitalisations of the EuroStoxx50: ABN AMRO, Banco Bilbao Vizcaya
Argentaria SA, Banco Santander Central Hispano SA, BNPParibas, Deutsche
Bank AG, Deutsche Telekom AG, E.ON AG, ING Groep NV, Nokia OYJ,
Royal Dutch Petroleum Co, Sanofi-Aventis, Siemens AG, Societe Generale,
Telefonica SA et TOTAL SA.

U The study period begins in 03/16/2001 and ends on 09/14/2004. The prices
used are the Last prices in Euros.

U Transaction cost are worth 10bp and the daily repo rate is taken at 4% (the
biggest value from 2000 is about 3.5%)
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First results (2)

1 We obtained 99 operations opened and closed on the considered period. We
backtested 105 pairs, 455 triplets et 1365 quadruplets.

[ The Sharpe ratio is 3.67.

U The average P&L is 1.7c, whereas the average length of an operation is 37
opened days.

U Last, the average annual growth rate is: 22%.
[ The following graph describes the liquidation value of the portfolio.
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Conclusion

[ The strategy set up looks like a promising one.

[ For equity single stocks, it would be interesting to work with portfolios greater
or equal to 20 basic assets. This would generate I'T problems, since the
backtesting for 15 basic assets was nearly 3 days long. But we have begun the
implementation of new libraries that should help us to divide by 2 or 3 the
calculation time.

(O It should be recalled that the only very important condition for such a strategy
to work is the liquidity of the considered market.

U Therefore, our next step will be the application of this strategy to CMS rates.
On one hand, we expect interesting results since CMS rates are very
correlated, but on the other hand the way to valuate swaps is more
complicated than for single stocks.
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